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Summary. — In an earlier paper concerned with potential scattering
a modified Regge representation had been developed that is distinguished
from other Regge representations by the properly that its analytic
structure is of just the type that is required by Mandelstam’s double
dispersion relation. Here we discuss how this representation may be
utilized within the framework of a relativistic S-matrix theory for pion-
pion scattering. An approximation to the exact scattering amplitude,
termed the strip approximation, is defined as the sum of all possible
contributions to the scattering amplitude from Regge poles in the direct
or one of the crossed channels. This strip approximation combines the
following features: analyticity properties as described by the Mandelstam
representation, exact crossing symmetry, « Regge behaviour» at high
energies, description of bound states and resonances at low energies,
and of forces due to the exchange of reggeized particles. Partial-wave
amplitudes are discussed and the unitarity condition for complex angular
momentum is introduced. A set of equations is then obtained that seems
to be sufficient in principle for a self-consistent determination of the
Regge trajectories, as far as they are located in the right half-plane, and
of the background term of the scattering amplitude. Due to the com-
plexity of the equations a numerical treatment is not yet in sight. Our
work is related to other recent work on bootstrapping of Regge trajec-
tories by Chew and Jones and by Frautschi, Kaus and Zachariasen.

1. - Introduction.

In an earlier paper (*) we have shown that in the theory of potential scat-
| tering a decomposition of the scattering amplitude into a Born term, a back-
stound term and & number of Regge terms can be obtained such that, apart

—

(') M. KrerzscnMAR: Nuovo Cimento, 32, 1405 (1964). SWAIN HALL LIBRARY
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336 M. KRETZSCHMAR

from the Born term, each term separately satisfies a Mandelstam represer.
tation with the correct boundary for the spectral function. All unphysica]
cuts had been eliminated. For the calculation of a Regge term only that part
of the corresponding trajectory that was located in the right half of the angulay
momentum plane (Rel>—3) had to be known, and as a consequence the
spectral function associated with the Regge term was nonvanishing only withiy
certain strips. The strip concept thus induced was closely related to the one
of CaEw, FrRAUTSCHI and MANDELSTAM (2).

In the present paper we wish to show how these results can be used in the
framework of relativistic S-matrix theory if one is willing to accept a Regge
formalism that is constructed in analogy to potential scattering theory. Al
though the basic considerations on which our formalism is built are more ge-
neral, we discuss for reasons of simplicity only the amplitude for elastic pion-
pion scattering. Complications due to spin and due to unequal masses are
absent in that case. In the first few Sections we briefly review analyticity
properties, crossing symmetry, and implications of elastic unitarity for the
pion-pion scattering amplitude, mainly in order to introduce our notation and
to cite some important equations which are refered to later on. In Sect. 5
the Regge formalism is introduced. The amplitude for elastic pion-pion scat-
tering when expressed in terms of the generalized potential (?) is assumed to
be analogous in structure to the scattering amplitude for potential scattering:
The generalized potential and the elastic spectral function of S-matrix theory
correspond, respectively, to the first Born approximation and the ordinary
spectral function of potential scattering theory. In the latter case we know
from ref. () how Regge trajectories in the right half of the angular momentum
plane contribute to the spectral function within certain strips. For S-matrix
theory we now postulate that in an analogous fashion Regge poles in the direct
channel are associated only with the elastic spectral function, not with the
generalized potential (*). For a known set of Regge parameters «(s), f(s) the
corresponding contribution to the elastic spectral function can be calculated
explicitly, using the methods of ref. (!). This contribution is nonvanishing
only within a strip, the width of which is determined by the energy interval
over which the trajectory passes through the right half of the angular mo-
mentum plane. Carrying out a double dispersion integral over this strip and
supplementing it, if necessary, by pole terms we obtain the contribution from
the direct-channel Regge pole to the scattering amplitude. A simple appl-

(?) G. I'. Carw, S.C.Fraurscui and S. MANDELSTAM : Phys. Rev., 126, 1202 (1962).
(®) G. F. Cuew and S. C. Fraurscui: Phys. Rev., 124, 264 (1961).

(*) For reasons of simplicity we are discussing here only a one-channel (rr) theory:
For a many-channel (7w, nw,...) theory this prescription has to be slightly modified

so as to reflect the extent to which unitarity is taken into account.
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STRIP APPROXIMATION WITH REGGE POLES ETC. 837

cation of crossing symmetry yields immediately all contributions from Regge
poles in the crossed channels, and in particular their contribution to the gener-
alized potential.

The sum of all terms contributed by Regge poles, whether in the direct
or in the crossed channels, is called the «strip approximation » to the scat-
tering amplitude and combines the following features: analyticity properties
as described by the Mandelstam representation, exact crossing symmetry,
« Regge behaviour » at high energics, description of bound states and reso-
nances at low energies and of forces due to the exchange of reggeized particles.
The strip approximation is thus believed to describe most of the interesting
features of the scattering amplitude. In Sect. 6 the contribution of the strip
approximation to the partial-wave amplitude of complex index I (Rel> —})
is discussed in detail. In Sect. 7 unitarity is imposed on the partial-wave ampli-
tudes for all complex [ in the right half-plane. The effects of inelastic processes
are taken into account only to the extent that they are described already by
the strip approximation, otherwise multichannel calculations would be un-
avoidable. We obtain a pair of equations along each Regge trajectory, and
N/D equations elsewhere. In principle, the set of equations obtained seems
to be sufficient to determine in a self-consistent manner the parameters of the
Regge trajectories, as far as they are located in the right half-plane, as well
as the background term of the scattering amplitude. A practical evaluation
of our equations, however, will presumably be very difficult.

The work presented in this paper is closely related to recent work by CHEW
and JoNES (4) and by Fravurscsl, Kaus and ZACHARIASEN (°). Whereas the
general philosophy adopted in this paper is the same as in the work of these
authors our approach differs from theirs in several important points, as will
be discussed later on.

2. — Definition of amplitudes and spectral functions.

We consider elastic pion-pion scattering. Kach external particle is characte-
rized by a four-momentum p; (¢ =1, 2, 3, 4) and an isotopic index that assumes
the values 1, 2, 3 and is denoted by «, 8,y or 4. In order to have energy
and momentum conservation expressed by p,-+ p,-+ p;+ p,=0 we choose
for incoming (outgoing) particles the timelike component p,, of the four-
momentum ¢, to be positive (negative), while the spacelike part p, of p; is
parallel (antiparallel) to the actual physical momentum. Let us consider the

(Y) G. I'. Cuew and C. E. JoNgs: Phys. Rev., 135, B 208, 214 (1964).

(®) 8. C. Fraurscui, P. E. Kavus and F. ZACHARIASEN: Phys. Rev., 133, B 1607
(1964).



838 M. KRETZSCHMAR

process where the particles 1 and 2 with isotopic indices « and 5 are incoming,
1.6 (pyot) 4 (Pof) = (— psy) 4 (—ped). Then we can introduce the Lorvent.

invariant Mandelstam variables s, ¢, u by
§ = (prt+pa) = (Ps+ pa)? = 4(Qi 4 u?),

(2.1) b= (ps+ p)?= (P2 + ps)? = —2¢;(1 — cos b)) ,
U= (ps+ ) = (p1+ pa)? = —2¢;(1 -+ cos ) ,

where u denotes the pion mass, ¢, the center-of-mass momentum and 0, the
scattering angle. Since s is the square of the center-of-mass energy we speak
of «scattering in the s-channel». The variables s, t, v are related by

(2.2) s+t u=4u?.
For definition of the «¢-channel » we consider the reaction

(px'}’) -+ (2710‘) - (~ pzﬁ) 4+ (— p45) ’

for which center-of-mass momentum ¢, and scattering angle 6, are related
to s, &, u by

t = (ps+ 1) = (po+ po)* = 4(¢; + 1)
(2.3) U= (P + ps)* = (P Ps)? = “‘2(13(1 —cos0,) ,

§ = (p1+ P)? = (Ps+ pa)? = —24¢3(1 4- cos0,),
Similarly the «u-channel » is defined on the basis of the reaction

(Pof) + (pay) = (— prot) + (— p4d)

and in terms of the center-of-mass momentum ¢, and scattering angle f,
we have

w=(po+ Py)? = (P + pa)* = 4q, + 12)

(2.4) § = (P14 po)* = (Ps+ pa)* = — 24, (1 — cos0,)

t = (ps+ p1)2 = (P4 pa)? = ——2Qi(1 -+ cosf,) .

Our formulas for the ¢-channel and the u-channel are derived from thost
for the s-channel by cyclic permutation of particles 1,2, 3. The formulas
therefore, differ slightly from those of CHEW and MANDELSTAM (°), who hav

(%) G. F. Curw and S. MANDELSTAM: Phys. Rev., 119, 467 (1960).
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STRIP APPROXIMATION WITIHH REGGE POLES ETC. - 839

pased their definitions on the use of simple transpositions of pairs of particles.
The advantage of the present scheme lics in the fact that any relation for an
amplitude in the t-channel or u-channel can be derived from the corresponding
relation in the s-channel by a cyclic permutation of s, ¢, v without having to
observe additional rules.

Deferring the problem of subtractions to a later discussion we assume the
amplitude for pion-pion scattering in the s-channel in the isotopic spin state
I (I=0,1,2) to satisfy a Mandelstam representation:

—1)

. (t’,u ,‘44‘;‘4(_',
= {dt /d —t)( + Jduf W —s)

The scattering amplitudes in the ¢-channel and u-channel will correspondingly
be denoted by 7%(t, u, s) and T%(u, s, t). In order to make clear in what sense
the symbols v, o, v for the spectral functions are used we rewrite eq. (2.5)
for the ¢-channel:

(2.5)  Tils, t, u) = —[dsjdt’ »—l (—S .

[co] @

(2.6)  Tilt, u, 8) = ; fdt’fd '(th_t;)t’{ﬂ)&)

4/12 4t

ai(u', s") , 9_,,t,)7.ﬁ
4~fduf (w'— u) (s'— jL—f fdt —8)(t'—1)

Equation (2.6) is obtained from (2.5) by applying the cyclic permutation
$—>t, 1—u, u—s, as suggested by eq. (2.3). Similarly in the w-channel we
have a representation with the spectral functions (*) vl(u', s'), o(s'y¢') and
ot u').

The Mandelstam representation, eq. (2.5), implies for the scattering ampli-
tude TI(s, ¢, u) three representations by single dispersion relations, namely
for fixed s, for fixet ¢, and for fixed u. We denote the discontinuity of the
scattering amplitude across the cut along the positive real t-axis (from
t=4pu? to t =+ co) by M!,(s, ), similarly we denote the discontinuity across
the cut along the positive real w-axis (from u=4u* to u= -+ co) by M’ (s, u).

su)

(*) Note that we have vi(x, y)=wv;(x, y) =’ (x, y) and similar identities for ¢ and 7.
Al . . . . . . . 3
The subscripts s, t, » merely indicate which combination of variables appears in the
argument, but are superfluous otherwise.
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Equation (2.5) then requires

, __1_[ O au(ly )

(2.7) Miw(s, 1) = o 8’———8 (4u 2g—1)’
/_lz

¢ ' (Ao 4}%)4"m44

(2.8) M3, u) = nf el + f ‘u s —u)’
ap

and the dispersion relation for fixed s for the scattering amplitude T4(s, ¢, u)
reads

(2.9) Tis, t, u) =

= /dt’ ,J‘{sit)( t') [ M (s ) )
7

1

ap? du

U'—u

Because the pion is a boson of isotopic spin 1 the scattering amplitude I
is symmetrical in ¢ and % for I= 0 and I =2, and antisymmetrical for I=1,
thus we have

(2.10) TH(s, ¢, u) = (— 1) TU(s, u, 1) .

To satisfy this symmetry we have to require (z, y being real variables)

(2.11) M, (s, ) = (— 1) M, (s, @)
and
(2.12) ’Ui(y, x) = (— 1)’z§(a7, Y) s G:(%y Y) = (— 1)10'5(?/7 x) .

It is convenient to introduce the amplitude

[so]

1 , M (s,1")
(2.13) T (s, 1) = = dt 7:('2'—7" ,
aut
which allows us to write
(2.14) TI(s, t, u) = T™P(s, t) + (— 1) TP (s, u) .

Denoting the discontinuity of T across the positive real s-axis by M,
we have (%)

r )t
(2.18)  Mi(s,t) = (s —4u? )111{)1 (TP (s + ey 1) — TiP(s—dg, 1)) = fdt’ t’(it)
4,u’

(*) We use Mi(s,t) as an abbreviation instead of writing M%), 1), which would
be suggested by consistent use of our notation.

7404
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STRIP APPROXIMATION WITH REGGE POLES ETC. 841

Now the discontinuity of the full scattering amplitude 7% can be written as

.1 . .
(2.16) Mﬁ(s)(sa tyu) = 0(s—4p?) 161_1)101 % (Ti(s + tg, by u) — Tﬁ(s_“:y t u)) =
= Ms, t) + (— 1) MXs, u) .

3. — Crossing symmetry. .

In the last Section we have exploited already the symmetry conditions
which follow from Bose-Einstein statistics. These are, however, only special
cases of the more general crossing symmetry that has been described in more
detail in the paper of CHEw and MANDELSTAM (). As these authors have
shown, the scattering amplitudes 77 in the s-channel can be written as linear
combinations of the scattering amplitudes T in the ¢-channel or of the ampli-
tudes 7% in the u-channel. More specifically, the following relations are sup-
posed to hold (*):

2
(3.1) THs, ty u) = 2, (— 1) B, TF (1, u, $) Z T (u, s, 1),

I=0

where the coefficients f,,, are the elements of the so-called crossing matrix

oo
(3-2) (511’) - % é -%
1 1 1
3 2 6

The crossing matrix satisfies the following two relations
(3-3) z 1811‘/3)1’1" - 611” )
I'=0
(3.4) Z Brr(— l)rﬁl'l" = (— l)Hﬂﬂu” .
I'=0

Equation (3.1) together with the Mandelstam representation for the ampli-
tudes T7, 77 and T) [cf. eq. (2.5) and (2.6)] implies immediately crossing

(*) Equation (3.1) is identical in content to the relations of Chew and Mandelstam,
formally, however, it differs by additional sign factors (—1)!" and (—1)!. These arise
from the fact that in going from one channel to the other we permute the three
variables (s, ¢, u) cyclically, while Ciew and MANDELSTAM perform only a transposition
of two variables [cf. eqs. (2.1), (2.3), (2.4)].

7405



842 M. KRETZSCHMAR-

relations for the spectral functions:
2 ’ ' 7

(3.5) s, t) =2 (=11l (s, 1) = (—1) D B0l (s, 1),
2 , 2 ,

(3.6) Ug(ta u) = Z (—1) ﬁu'vi (t,u) = (—=1) z 611’112 (t, u),
2 1 ’ . !

(37) rﬁ(u, 8) = z (— 1)1 ﬂu’o-tl (u7 S) - (ﬁl)l E ﬂn'v; (u’ 8) .

Equation (2.12) allows us to eliminate the spectral functions 7! and ¢f
completely and to express everything in terms of the . We obtain

[

(3.8) ity u) = 2 (= 1) B (] (4 w) + (= 1) 0] (u, 1)

I

N

The functions o' must moreover satisfy the symmetry relation
(3.9) vi(s, ) =3 B0 (1, 8)
I'=0

as follows from eq. (3.5). Thus there are only two independent spectral
functions (*).

The crossing relations for the absorptive amplitudes M , M, and M’
can also be easily obtained from eq. (3.1), but we are not going to noced these
relations in what follows.

4, — Some implications of unitarity.

s (8 by )
can be written as a sum of contributions from all states that are accessible
from the given initial state. We thus have a decomposition

The unitarity condition tells us that the absorptive amplitude M

(4.1) M!

s(s)

(8, 8y u) =M% (s, t, u)-+ M!

s(s) el s(s) in

(S’ t? /M) )

where the first term is the contribution from intermediate states representing
elastic pion-pion scattering, and where the second term represents the contri-
bution from inelastic intermediate states. The elastic part can be calculated
explicitly in terms of the scattering amplitude 7%, and from the expression

(") We remind the reader of the footnote following eq. (2.6).

7406



STRIP APPROXIMATION WITH REGGE POLLES ETC. 843

so obtained [cf. eqs. (4.5) and (4.6) below] it follows that M!  has a decompo-
¢ition analogous to eq. (2.16), namely '

(4.2) M

s(s) el

(8, 8, w) = M7 (s, 1) + (— 1) M (s, u),
where M. (s, t) as a function of ¢ has a cut along the positive ¢-axis only,
from t=16u* to =+ oco. Combining eqs. (4.2) and (2.16) we find a similar

decomposition for M; . (s, t, u):

(4.3) M (8, 1y w) = M (s, ) -+ (— 1) M

<]n

(s, u) .

Thus we can conclude that Mi(s, t) can be divided, just as the full absorptive
amplitude, into an elastic and an inelastic part

(4.4) Mi(s, t) = ML (s, t) + M. (s, 1) .

As was shown by MANDELSTAM (7) the absorptive amplitude M7 (s, {) can
be expressed as follows in terms of the scattering amplitude (*) T!%:

,,,,,, +1 27
1 q/s—dp2 [ [
(15)  Miuls, )= ‘/ —w;i J de’ J dop' -
0 0 )
. (TIS(+)*(8, t') T£(+)(8, t”) + [(_ TIH—) ]* T1(+)<S, u ))

I

where ¢, t', t"; u, w', u" and z, 2/, 2" are related by

1 =—2¢(1—2z), w =—2¢(1+2),
w6 i =—2¢*(1—2"), w=—2¢1+2),
" =—2¢(1—2"), W' =—2q;(1+2"),
¢ = Ls —4p?), " =22+ cos ¢ [(1—22) (1 —2) ]

(*) In writing eq. (4.5) we took into account that two-pion states that are eigen-
states of total isotopic spin are either symmetrical or antisymmetrical. In the center-
of-mass system, when one reverses for a given eigenstate the momenta of both mesons
the state remains unchanged up to a sign factor (— 1. [Examples: |7*(+ q)n'(—q))
or (1/4/2)(1m*(4- q)2%(— q)> — | 7w+ (— q) 2°(+ q)>) ]. TheIefOIe summing over all states
of the two-particle Hilbert space, as, e.g., in the evaluation of the unitarity relation,
the angular integration has to be restricted to one half of the unit sphere otherwise
double-counting results. What is defined by most authors as their scattering amplitude
18 actually only I of the true scattering amplitude. These authors integrate over the
whole unit sphere and carry an additional factor 2 in eq. (4.7), wherefore their formalism
1s identical in content to ours. The present formalism, however, conforms more strictly
to the usual prescriptions of quantum mechanics (see also footnote (**) on p. 846).

(") S. MANDELSTAM: Phys. Rev., 112, 1344 (1958).
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844 M. KRETZSCHMAR

Both terms of the integrand give equal contributions to M? (s, ). The dis-
continuity of MI (s, t) across the ¢-axis is given by

= M

- 9 . AT/
(4.7) L als, t):%-ﬁ(sém) dtJd”B(K(S LY ) gy (s, ') Mis(s,t")

V(s —4p?) VE(s; 1,1, 1"
4t ap®
with K(s;t,t,1") defined by
// 2 ne " " 4ttlt”
(4.8) K(s;t, ¢/, t") = t2 4t 4 " —2(¢t' + "+ t't") — el

Equation (4.7) serves as the definition of the « elastic spectral function» v} , (s, ¢).
From the fact that the integral is actually extended over only those values
of ¢" and t" for which K (s;t,t',t") is positive, one can conclude that the elas-
tic spectral function v! . is nonvanishing only in the region (°)

(4.9) s>4ur,  t>

An inelastic spectral function o’

3, in

can be defined by the equation

(4.10) V7 (8, 1) = vl(s, 1) — vl (s, 1)

and can be shown to be nonvanishing only in the region ()

4u3s
(4.11) s>16pu?, t>S—L16‘u2 .

Whereas of | can be calculated explicitly in terms of the scattering ampli-
tude itself [eq. (4.7)], there is no similar expression available for o, ; and
even if we would know how to calculate v/ .. the calculation would involve all
possible inelastic amplitudes, which are even less known than the elastic ampli-
tude. Thus we shall introduce an approximate spectral function vi(s, ¢), which
comprises all of the elastic spectral function, and of the inelastic spectral func-
tion only so much as is necessary to maintain crossing symmetry in connection
with ¢! .. To be more specific we define

(412) zi(sy t) - vs el + S‘ 511 vt el t S)

The second term on the right-hand side represents inelastic processes, speci-
fically the contribution from all inelastic collisions that are mediated by one-

7408



STRIP APPROXIMATION WITH REGGE POLES ETC. 845

pion exchange. We shall refer to this approximation as the « elastic unitarity »
approximation.
It is easy to show that ¢! satisfies the crossing relation

(4.13) y /311 t, §)
The remaining approximate spectral functions can be defined by
21 '
(4.14) Gty w) = X (= 1) By 57 (8 w) + (= 1) T (w, 1)
=0
- ﬁll (/Ut el t u) “’ (— 1)[ 111 el(u7 t)) Y

(4.15) T (u, s)

Il
—_~
l
[
=

<)
e
B
S

5. — Introduction of Regge hypothesis and strip-approximation.

The Regge hypothesis will now be introduced, as is customary, by tracing
analogies to potential scattering. Such analogies are most clearly exhibited
when we make use of the generalized potential due to CHEW and FRAUTSCHI (8),
defined by

1 s e 1
(5.1) V (s, 1) = Ml(s, 1) —~ / qg tealht)
Jt S’-*é
and
(5.2) V(s ) = (— 1) V2 (s, u) .

s(t)

With its help the scattering amplitude 7°%(s, t) can be written as

) L[ Vils,t) | 1 CLs )

0.3 Tg(‘l') 1) = — dt/ S(t) v ;117 [d t S, ell o

(5.3) (s, 1 n[ oloe 4 2 fas fav et D)
au’ du? qu?

which is to be compared to the potential scattering amplitude (%)

«© © o2}

5 BN POV R Y P CRAD
(5.4) fls, 1) = .[d/t /l/2_t+ﬂ2‘jd [d Y

m2 0 am?2

(®) G. F. Caew and S. C. FraurscHl: Phys. Rev, 124, 264 (1961)
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ignoring for the moment bound states and subtraction terms. In potentig)
scattering, when we calculate the analytically continued partial-wave ampl;.
tude we find that the contribution to it from the first term, the potential term,
18 & holomorphic function of 7 in the right half-plane (Rel> —13), and that
all singular terms, in particular the Regge poles, stem from the second, the
spectral function term. We shall assume now that the structure of the rely.
tivistic amplitude, eq. (5.3), is quite similar: All singularities in the right half
[-plane of the s-channel, in particular all s-channel Regge poles, will be sup.
posed to be due to the double integral term in eq. (5.3), and consequently the
term due to the generalized potential will be assumed to depend only on the
Regge poles in the crossed channels (*). It is well known that the Regge poles
in the crossed channels are responsible for generating the forces acting in the
direct channel and for the high-energy behaviour in the direct channel. Pos-
sible branch cuts in the [-plane must be treated in an analogous fashion.
The partial-wave expansion of the scattering amplitude is given by (*)

(5.5)  Ti(s,t, ) i 20+ 1) TH4(s)- [Pl (]_+ 2? “)Jr(—l)’Pl (1+,£“, _)]
1=0 s —4u® dp?

whence we conclude for T!%(s, t)

© 2
(5.6) TID(s, 1) z 21 4+ 1) TH(s) P, (]+ ¥:t‘-).

1=0

(*) We wish to emphasize that this assumption is an approximation only, appro-
priate for one-channel calculations as in the present paper, where essentially only the
nr-channel is considered. More generally, inelastic amplitudes too may involve Regge
poles in the direct channel (e.g., nn—>p->nw), and via unitarity these may contribute
to the inelastic spectral function v!;, of the elastic scattering amplitude and thus to
the generalized potential. However, a self-consistent determination of the associated
residues can be achieved only within the framework of a multichannel calculation.
Our approximation, therefore, can be understood as resulting from a decomposition
of the residue function according to the intermediate states in the unitarity relation,
of which only one term is retained: f;(s) Z(p” ) B::(8) & @(5) Bii(s) [whence

@i(8)=1; cf. eq. (7.10)]. This decomposition has been discussed by CHENG and
SHARP (°), and its connection with the factorization theorem for the residues has
been pointed out.

(**) This definition of the partial-wave expansion already takes into account the
symmetrical or antisymmetrical character of the initial and final states. The partial-
wave amplitude so defined satisfies the usual unitarity relation. The total elastic
scattering cross-section is obtained by integrating the amplitude squared times 4/s
over half a unit sphere (because of the symmetry or antisymmetry of the final states):

oq(s)=(4/s) 72> (21 + 1)(1 + (— 1)) | T74(s) [2=(8/q5) z (21 1) sin07.
1=0 1=0,2,4,... for [=0 or2
1=1,3,5,... for I=1
(") H. CuexG and D. Suare: Ann. Phys., 22, 481 (1963)
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STRIP APPROXIMATION WITH REGGE POLES ETC. 847

We can now introduce the Regge hypothesis and the strip-approximation.
The Regge hypothesis consists in the following assumption: A Sommerfeld-
Watson transformation be applicable to eq. (5.6), so that for physical s>4u>
the amplitude 77 can be written in the usual fashion as a sum of terms
contributed by Regge poles, plus a background integral that can be taken along
the line Rel=-—1. This includes the assumption that all physical partial
waves including S- and P-waves can be obtained from higher partial waves
by analytic continuation, in other words that there are no «elementary » par-
ticles in the theory. Regge trajectories for isospin I in the s-channel are de-
seribed by functions of(s) with n=1, 2, ..., the associated reduced residues are
»I(s). Suppose that for n=1, 2,..., N, (and for no other =) a part of the
n-th trajectory, corresponding to the energy interval s; < s<s] , lies in the
right half of the angular-momentum plane (Rel>—}), then, using the me-
thods of ref. (1), we can write the contribution to the amplitude 79" due to
the presence of the n-th Regge pole in the right half-plane in the following
form:

©

m 1 I¢.r
Tg,(:)(g, t’) = 7; fds’ g—"M ,

—_
a1
-

~

8'—s
aut

where the a,bsorptive amplitude gI(s, t) is defined by

(5.8)  gu(s, t) = — O(s— Max [she, 4u2]) O(s5,, —$) 2%

2§
S

L (2ad () -+ 1) pi(s) (;_L__Mz)af,(s) [nPa,{(s)(——z) 4 1 fda? exp [ (om(s) + %1)'ﬂ] B

sinmad(s) | 4/2 (cosh z — 2)?

©
2&

- o {8\ ® [aPal¥s)(—2) 1 exp [(ai*(s)%—%)x]]}
7~ (207() + 1)) (1_‘“ ) [ sin wo*(s) + NG fdx (cosh z —2)? '

s3]

Here the abbreviation z==14-2¢-(s—4u2)~* has been used, and & is deter-
mined by the fact that the smallest mass, that can be exchanged between two
pions, is 2u. Thus (cf. ref. (1))

2-4p* s+ 4u?

5.9 ; =1 =
(5.9) cosh & l+s—4/42 A

which is equivalent to

2 16u2s 21
(.10 sh2f=1 4+ —— - LR 1 o,
) cosh 2& +8~~4[u2 §—4u* +S——4M‘~
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The absorptive amplitude ¢I(s,?) has a branch cut in the ¢-plane, from
t=1,=16pu%s (s —4u?)~! to t=-+oco. The discontinuity across the branch cut

is easily. determined to be (%)
t

1 _dr
V2 ) Vi
dise, [(20A0) + 1)yal)2 O [hs — ) + 7+ Vs — dpy o]
' \/(8—4y2)r+12 '

(5.11)  on(s, t) = O(s —Max [sno, 4u2]) O (57, — 8) O(t—1,)

This spectral function may be used to write a subtracted dispersion relation
in ¢ for the absorptive amplitude g.(s, t). The function g,(s, 1) is nonvanishing
only in a strip parallel to the t-axis, Max[s!,, 4u*]<s<s],, which strip is con-
tained in the larger region where o’ (s, ¢) is nonvanishing as defined in (4.9),
We shall consider ol(s,t) as the contribution to the elastic spectral function
vl (s, 1) due to the presence in the right half angular-momentum plane of the

n-th Regge pole in the s-channel. The total contribution from s-channel Regge
poles (in the right half-plane) to the elastic spectral function can be written as

(512) s el z Qn 8?

The contribution from a possible branch cut in the angular-momentum plane
should also be separated from the background term and be included in 21 (s, ).
Crossing symmetry now tells us how to obtain the general contribution from
Regge poles, in the direct channel and in the crossed channels, to the three
spectral functions »!, ¢/, and /. Recalling eqs. (4.12)—(4.15) we define

(5'13) 7&.1;(87 t) - @:, ( + S\ 611 t, el )

(5.14) F(t, u) =

I

ga%w

ﬂn ( i al _I— (—1) 62 e](u7 t)) )

(5.15) T u, 8) = (— 1) 0!(sy u) .
The spectral functions so defined satisfy all conditions of crossing symmetry,
and they are nonvanishing only within certain « strips ».

Thus the prescription to replace in the Mandelstam representation, eq. (2.5),
the exact spectral functions o/, ¢ 7! by the corresponding barred spectral
functions v7, &, #! defines an approximation 7" to the exact scattering ampli-
tude T%(s, ¢, ) that we may term appropriately the «strip approximation » (*).

(*) For some remarks concerning the validity .of this approximation see the end
of this Section.
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In essentially the same spirit the term has been used in the more recent work
of CHEW, FRAUTSCHI and MANDELSTAM (2). From the above it is obvious how
to define the «strip approximation » for any other quantity that can be de-
duced from the Mandelstam representation, like absorptive amplitudes, gene-
ralized potentials ete.

In order to analyse the structure of the stnp approximation it is useful to

define

(5.16) G (s, 1) = 2 gu(s, 1),

—_
(14
—
-

™M
=
o
»

S
N
\
@
|
@

where ¢.(s, t) is given by eq. (5.8) and hi(s, t) by

o]

1
(5.18) hi(s, 1) = f g €81
14 S — 38

ap
The integrals in these equations are convergent as the spectral functions are
nonvanishing only across the finite width of the strip. The absorptive ampli-
tude M, (s, t) in the strip approximation can be expressed [cf. eq. (2.7)] in

s(t)
terms of these functions:

@ [se]

. _ 1 syt 1 as(t, u')
-«.1 I r - N 8 b L ] ’
(5.19) Mco(s; 1) 7 /ds s'—s 7 jdu w'— (4u? —s —1)

au

2

an b

and using eqs. (5.13), (5.14), (5.16) and (5.17) we obtain

(5.20) ML, (s,t) = H(s, t) -+ 2 B, G (t, 8) +
1'=0

S Y B (6 At — 5 — 1) + (— 1Y HT (gt —s—1, 1) .

1'=0

From eqs. (5.1) and (5.17) we obtain the generalized potential in the strip
approximation:

(5'?‘1) s(t) z /311 GI s) -+
1'=0
+ D (=D B, (Xt 42 —s—1) + (— 1)TH" (4> —s5 —1, 1)) .
1'=0

54 — Il Nuovo Cimenlo.
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The first term on the right-hand side represents the effect of (peripheral) ip.
elastic processes in the s-channel, and has in the s-plane a right-hand cut only,
starting above s=16u*. The second term, due to the third spectral function,
has only a left-hand cut in the s-plane and describes the forces due to the
crossed channels. The absorptive amplitude M{(s, t), defined by eq. (2.15), cap
similarly be approximated by

2
(5.22) Mi(s, t) = GI(s, t) + > B, H (¢, 3) .
I'=0

Equations such as (2.15) or (5.19) are in general not valid as they stand, they
should properly be written with the necessary subtractions applied. In the
strip approximation, however, when the corresponding absorptive amplitudes
are written in the form of (5.20) or (5.22), all subtraction problems are auto-
matically taken care of. One can also see that the integral representing the
contribution to the scattering amplitude from the generalized potential

(5.23) : [ % Vs, 1)

7 t'—1

au®

is convergent, as follows from the finite width of the strip and from the results

of the Appendix of ref. ().

Finally we can find a decomposition of the strip-approximated scattering
amplitude 7%®(s, t) similar to the decomposition obtained in ref. () for the
case of potential scattering [eq. (2.28) of ref. (})]. We only have to observe that

o« o]

1 hi(s,t 1 T(s', t
(5.24) "[ g 1l ) —:——fds’»gﬁfflj,
b4 t'—1 TT §'—s

16u* au

where the left-hand side should actually be written in a properly subtracted
form, while the right-hand side does not need any subtraction. We can then

write
(525) IVI(—H(9 t) TIH-)(S t) +TI(+) 8’, + ZTIH-) )
with the right hand terms defined by

(5.26)  T{H0(s, 1) =

: (v - —_— L - ! !
=3 (1) 511( G s ) ,1)-fdzfﬂ (dpr—s—1, t)),
e , —1t

0 162
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2 1 G (t', s)
5.27 Tias, 1) = — |dt’ ’
(().-4) (s, ) 1'2::0'6” n/ 1
4pu?
= 1 syt
(5.28) T (s, 1) = - st’ gsf_’s) (n=1,2,..., N}
ap?

Equation (5.26) represents the analogon of the nonrelativistic Born term. One
therefore associates the amplitude T;'f; with the forces acting in pion-pion
states in the s-channel. In the following we will refer to it as the «force term ».
The amplitude 775 has a cut in the s-plane along the negative real axis from
s=—16u* to s =—oco. Equabion (5.27) describes diffraction scattering due
to peripheral inelastic processes, and dominates the high-energy behaviour of
the amplitude. It has a cul in the s-plane from s=16u* to s=--oco. FIi-
nally the amplitude 77" describes the effect of the n-th s-channel Regge pole
for isotopic spin I. This amplitude dominates the low-energy resonance region.
It has a finite right-hand cut in the s-plane, the length of which is determined
by the width of the corresponding strip of the spectral function.

It is the appropriate place here to add a few remarks about contributions
from possible pole terms which have been disregarded up to now. Pole terms
always occur when a trajectory of(s) passes through a nonnegative integer [
as s is increased from — oo to 4u®. They are associated with physical bound
states of the wm-system when 7 is a physical angular momentum for isotopic
spin 1. Experimentally such bound states are believed to be nonexisting, but
the framework of the theory must be general enough to allow to investigate
the possibility of such bound states theoretically. On the other hand, even
in the absence of bound states, we must ask whether or not pole terms asso-
ciated with nonphysical angular-momentum values ! might have any effects,
e.g., from an I =1 trajectory passing through =0 or from a Pomeranchuk-
type trajectory passing through I=1.

Since we have constructed the Regge formalism of our relativistic S-matrix
theory so as to be closely analogous to that of potential scattering theory we
can take over the results of ref. (1), and upon application of crossing symmetry
we obtain the desired crossing-symmetrical set of pole terms. Suppose that
the Regge trajectory ol(s) passes through 1=0 at s=g¢!,, through I=1 at
$=0,,, ..., through 1=1 at s=o¢., and then turns away from the real axis
into the upper half of the complex I-plane, and denote the first derivative of
%,(s) by ol'(s), then the results of ref. () imply that eq. (5.28) should be
replaced by

- o 1 I (I t
5.29) TLD (5, 1) = Rals, 1) +— as 955 )
J

s—s '

4;42
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l{z 9 I( I
(5.30) Ri(s, 0= '[( H;vl e p (”E—gﬁ)}
- ) n nl

This result can also be expressed by saying that the double-dispersion integrg]
over the spectral function g;(s, {) is associated with the set of pole terms RI(s, 1),
Crossing symmetry, however, requires that each such dispersion integral iy
the representation of the complete scattering amplitude must be associateq
with a corresponding set of pole terms. Considering now the complete scat-
tering amplitude in the strip approximation

(5.31) T(s, t, u) = T'P(s, t) + (— 1)F TXP(s, )

and defining

(5.32) R(s, 1) ER’ s, t)

n=1

we obtain the following pole terms. From Regge poles in the direct channel
(5.33) B (s, t) + (— 1) B*(s, u) ,

secondly, associated with the amplitude Ts (8, &, u) that describes the high-
energy diffraction scattering

(5.34) ¥ B (B (t, 8) + (1) R (u, ))

and finally, I associated with the force term T_‘;’B(s, t, u) that originates from
the third spectral function [cf. eq. (5.14)]

(5.35) X (— DB, (RY(E, w) + (— 1) R (u, 1)) .

I'=

<

It is now easy to see that the [ =0 pole of an I =1 trajectory (e.g., p-me-
son) contributes nothing at all [expression (5.33) vanishes and (5.34) cancels
(5.35)]. On the other hand, a Pomeranchuk-type (I = 0) trajectory o,(s) with
residue (*) f,.(s) passing through =1 at s=o (e.g., 0=0) gives rise to a set
of pole terms that add up to a constant:

ZlgP 2)8P(U)
5- ———— for I =0 0 for I=1 2= for I =2.
ap(o )(0‘4/1) ’ ’ ap(0) (o — 4u?)

(*) As usual fp(s) is assumed to vanish when op(s) passes through 1=0.

7416
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In a theory taking the Pomeranchuk trajectory into consideration eq. (2.5)
must be supplemented by these constants.

In closing this Section we add & few remarks on the range of validity of
the strip approximation. We remember that the approximation has actually
been obtained in a two-step process: At first we made the replacement
VI A~ DL, 0y A 0L, TiaT!, based on the crossing-symmetrical « elastic unitarity »
approximation. Secondly we assumed t! ~t!, ¢! ~ ¢!, 7! ~ 7!, thereby drop-
ping the background integrals along the line Rel=—1.

Let us introduce an amplitude ’1~’§‘+’(s, t) representing the difference between
the eract scattering amplitude and the strip approximation, that is

(5.36) THP (s, 1) = T'P(s, 1) + T (s, 1) (%) .

When we denote by 7/(s, t) the amplitude obtained from 7*“(s, t) by the
elastic unitarity approximation of Sect. 4, then we can write T:‘+’(s, t) as being
composed of two parts:

(5.38)  TiP(s, 1) = (TP(s, 1) — D19 (s, 1)) + (T1V(s, 1) — T20s, 1))

The second part obviously consists of the various contributions due to back-
ground integrals associated with the line ReZ:~—%§. It is thus expected to
be a rather smooth function and to possess no particularly interesting structure.
Its asymptotic properties will not give rise to any troubles. In the low-energy
resonance region it will certainly be negligible.

About the first part much less is known. It describes the influence of all
nonperipheral inelastic channels in nr-scattering (e.g., nm — mw). These have
been neglected in the crossing-symmetrical «elastic unitarity » approximation
of Sect. 4, where only inelastic diagrams with one-pion exchange were taken
into account. The first term in eq. (5.38) thus describes the majority of in-
elastic effects, and it may possibly be of considerable importance in any quan-
titative calculation, as is indicated, e.g. by the work of ZACHARIASEN and
ZEMACH (). This term, therefore, needs further consideration. In general one
will be forced into a many-channel calculation which is, however, beyond the
scope of the present paper.

The main advantage of the strip approximation derives from the fact that
the approximated scattering amplitude and all derived quantities are mathe-

(*) Taking into account eqs. (2.13) and (5.20) we can write (for later use) a similar
tquation for the discontinuity of 7:™(s,t) across the t-axis:

(5.37) M8, t) = MLy (s, by + ML, (s, 1) .

(1) F. ZACHARIASEN and C. ZEMACH: Phys. Rev., 128, 849 (1962).
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matically well-defined functions of the Regge parameters «!(s) and y.(s), cop-
taining no further unknown parameters. They can be calculated in a straight.
forward way once a set of Regge parameters is given. At least for resonating
amplitudes in the low-energy region, where inelastic effects are still small,
strip approximation alone should give a valid description of the actual scat.
tering amplitude.

6. — Partial-wave amplitudes.

In this Section we shall discuss properties of partial-wave amplitudes for
complex [, in particular we are interested in the contribution to the partial-
wave amplitude from the various components that make up the strip-approx-
imated scattering amplitude. We shall see that the poles in the angular mo-
mentum plans are produced only by the corresponding Regge terms 1% (s, 1)
in the scattering amplitude.

Partial-wave amplitudes for integer [ have already been defined by eq. (5.6).
To extend the definition to complex I we make use of eq. (2.13) and of Heine’s
expansion for (¢#'—£)~*. Thus we obtain

©

. . 2tl
(6.1) THs) = — A M(s, )@ [T+ ),
N S__,4//L-A

where ), is a Legendre function of the second kind. This equation is valid
for all complex I with Rel> A, where by definition the number A’ is chosen
so that no Regge singularities are found to the right of the line Rel=A4":

(6.2) A” = Max {Re o(s): s, <

As is well known it is advantageous with regard to analytic properties to intro-
duce a reduced partial-wave amplitude

]7 —1
(6.3) th(s) = (1 '5’““/12) STEY(s) .

Using eqs. (5.20) and (5.37) we can immediately write down a decompo-
sition of the partial-wave amplitude, which is analogous to eqs. (5.25) and (5.36),

s,n

Ny
(6.4) 10(s) = TYs) + BL(s) + T8 (s) + 2 ENs)
’ n=0
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The various terms on the right-hand side are given by

~ -+ 1 ” 94!
6.5)  t'(s)= (f— 2) om /dt Mis(s, t) Q, (1+ 4#)

aut

g S —ah 1 2 .
(6.6) ts(s (Z ‘u2> % z (—1) B
70

. T . 2t )
qut

I I 'l ! ‘ 2tl
e oot 2]

1632

o]

11 S . -+ 1 2 /GI' t, 1 2tl
o0 B - (f—u) Tk S faere e+ 2 ),

4,0

8 3.l 8 2 b1 . /}I / 1 2t
08 B = (Fo) g a1+ 2).

16 12

All these amplitudes are analytic in the complex s-plane, apart from branch
cuts along the real axis. On the real axis for each amplitude we have a left-
hand branch cut from s=-—co to s=0, a region free from singularities from
§=0 to s=4y? and, with the exception of the «force term » #/3(s), a right-
hand branch cut from s=4yu* to s=-oco. The force term has a left-hand
branch cut only. Thus for each term in eq. (6.4) we have a dispersion relation
of the type

-] 0

) ise i s’ 1l
(6.9) 154 (s) = /ds’ discty7(s') +71zf , diset;*(s')

1
7T §'—s §'—s
4

ut -~

properly subtracted if necessary. As discussed in detail in ref. (1), these dis-
persion relations may be utilized for the analytic continuation of the partial-
wave amplitudes into the remaining part of the right half of the I-plane
(—3<< Rel< 4.

Next we will give the explicit expressions for the discontinuities across the
branch cuts. Using the same tricks as in ref. (1) we obtain the following result
for the Regge terms #2!(s):
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For 4pu?<s<< 4 oo

(6.10) disc i (s) = O(s —Max [shy, 4u*])O(sp— ) -

. oy (S N\ 200(s) + 1 exp [28(on(s) — 1))
dise {”"(8) (Z"”) 21+ 1 I— ol (s) ‘}’

and for —oo<ls < —12u*

4ul—s
_ 1 g\ —+D 2’
. . I,l . 2 = . 11,1 ! . -
(6.11) disct,,(s) = 1 (,u 4) fdt h,(s,t") P, ( 1 8—4;“2) .
16pu®

There are no singularities in the interval —12u*<s<0, so that we have ga
larger gap free from singularities (—12u®><s< -+4u?) than for the complete
partial-wave amplitude, eq. (6.4).

For the contribution describing the diffraction scattering due to inelastic
processes in the s-channel, eq. (6.7), we obtain for 16u* <s <+ o0

o)

) . B 2 $ -+ ] ., 2t’
012)  disetth() = 3 o (Sop) oo [t e (142
I

& s —4u?
4/;2
and for —oo<s<0
auP—s
o 1(, s —(4n 2 I 2t
(6.13) dlSC ts,in(s) e Z (Iu _1) -12)611' dt G (t 9 S)PL —1——8—'4,[142) .
4

We notice that the discontinuity vanishes in the physical region below the
inelastic threshold, as it should be. Thus we have again a singularity-free
gap of length 16x%. In eq. (6.11) as well as in (6.13) the discontinuity across
the left-hand branch cut is merely a reflection of the properties of the Le-
gendre function ¢, and has no dynamical origin.

This is different in the case of the «force term » eq. (6.6). As we men-
tioned already, there is no right-hand branch cut whatsoever, and the left-
hand branch cut is entirely of dynamical origin, describing the forces due to
the crossed channels. To give the explicit expression for the discontinuity,
we first must define the Legendre function of the second kind on the interval
—1<w<+1 of the real axis. This is done by ()

(6.14) Qu(x) = H(Qux + i0) + Q,(@ — i0)) (—1l<a< +1).

(') W. Maenus and F. OBERHETTINGER: Formeln und Sdtze fiir die Speziellen
Funktionen der Mathematischen Physik (Berlin, Gottingen, Heidelberg, 1948), p. 76.
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The discontinuity is then obtained as

- o 31 1 s\ Il 1l 1,
(6.15) disctyp(s) = — 1 (#2—1) (A7) + A2H(s) + 454(s))
with
(6.16) 1H(s) = z (— 1)1'611’@(”‘— s)
I'=0
qu’—s
i I' (g 2 ! Qt,
4u? »
(6.17) A7) = 2 (— D)™ O(—12u2—s) -
=0
! 4pt—s
- [dt’-Re H" (4u2 —s—1t',t')- P ——1——~2tl
il ’ l 8——4/12 ’
leu?

—s

2 2 [ .
(6.18) A7) = 3 (— 1) B O(—16u>—3s) Jdu’ Vhaldp:—s—u',u')-
I'=0

4

16ut
~ 2u' s 2u'
]

In the last equation the expression in curly brackets vanishes for all integer
odd I when I=1, and for all integer even | when I=0 or 2. Thus A%Ls)
vanishes for all physical values of I, but it is in general nonvanishing for un-
physical .

Having obtained now all the discontinuities we can perform the analytic
continuation in ! for the various amplitudes, given in the form of eq. (6.9),
from the region Rel> A’ into the remaining part of the right half-plane, i.e.
—3< Rel<A’. The problems connected with the analytic continuation of

~ amplitudes such as #'}(s) have been discussed in detail in ref. (!). The essen-
- tial point is the fact that discf|!(s) is singular for 1= (s) and 1= ol*(s)
. [see eq. (6.10)], so that a pole moves up from the unphysical sheet into the
physical sheet whenever [ is varied along a path in the I-plane that crosses
the Regge trajectory or the complex conjugate trajectory. The dispersion re-
lation for ZS’,',‘L(S) then acquires in addition to the integrals a pole term

I 1
(6.19) . ,V"("’;’) ,
an (G7Ll)(anl - 8)

where ¢!, is the root of the equation I=o!'(s) and where o’(ol,) denotes the
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first derivative of o(s) at s=o¢?,. No particular problems are encountered iy
the analytic continuation of #'}(s) and #(s). Both amplitudes depend on |
only over the index of Legendre functions (cf. eqs. (4.12)-(4.18)), and through.
out the half-plane Rel>-—1 Legendre functions of either kind are reguls;
functions of I.

Our explicit expressions for the discontinuities across the cuts enable yg
also to discuss the subtraction problem for the strip-approximated amplitude,
For lack of space we shall not give any details in the present paper, but mep.
tion only that a method described by Omnes ('?) can be adapted to our case,
Answers to all relevant questions can thus be obtained, and the results are
generally analogous to those of Ommneés.

7. — Unitarity and bootstrap equations.

Our work so far has resulted in the formulation of a strip approximation
Ti(s, t, u) to the exact scattering amplitude Ti(s, t, w). Put in different words,
we have obtained a prescription for separating from the scattering amplitude
T!(s, t, u) the contribution from all Regge poles in the direct and the crossed
channels, provided the Regge parameters o/ (s) and ».(s) are known, thereby
preserving crossing symmetry and the correct analyticity properties. The mo-
tivation behind this rewriting of the scattering amplitude is, of course, the
belief that in a number of problems this strip approximation constitutes a
useful approximation.

In order to give dynamical content to our equations we have to impose on
them the unitarity condition and to show that we are led to a number of
equations which, in principle, may be sufficient to determine all unknown
functions in our problem including the Regge parameters ol(s) and y.(s) in
a self-consistent manner, in other words that we are led to a bootstrap situation.

The unitarity condition for a physical partial wave in the presence of in-
elastic processes takes the form (1?)

/s — 42 A | ’
= (A BT &l “ . 1.1 ’ / s LT 1/,
(7.1) disc Ty(s) = / T | T5(s) | +]/ 8—44/12 1 1“‘(771(-5))2] .
The absorption parameter ! gives a summary description of the inelastic
processes and is connected with the imaginary part ¢, of the scattering phase
shift ¢! by #!=exp[—2¢!]. The variation of #; is thus restricted to the inter-
val 0<yl<1. The equation essentially says that discZ7'(s) can be decom-

(12) R. OmMNES: Phys. Rev., 133, B 1543 (1964).
(%) See e.g., G. I'. Cuew: S-Matrixz Theory of Strong Interactions (New York, 1961)
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posed just like the absorptive amplitude M (s,t, %) in eq. (4.1), into an

s(s)

elastic and an inelastic part. On the other hand, from eq. (6.4) we know that

(7.2)  diseT4s) = dise Th4s) +- S“ dise T7-X(s) + dise Tl (s),

n=1

whence we conclude that disc Tﬁ’z(s) must also be decomposable into elastic
and inelastic contribuations.

We now introduce an approximation which consists in neglecting the in-
elastic. contribution to disc ’fi"(s). In other words, only those inelastic pro-
cesses are being considered that can be described by Regge poles in the crossed
channels. 1t almost goes without saying that this approximation may not
really be well justified from the point of view of physies, but in the present
paper we are forced to introduce this approximation since we do not wish to
go beyond the framework of a one-channel (ww) theory. As is well known
from the work of ZACHARIASEN and ZeMAcH (1°) any theory of the mw pheno-
mena aiming at quantitative predictions must necessarily be a multichannel
theory, including, e.g., the ww and similar channels.

Within our approximation we can rewrite eq. (7.1) as follows:

(7.3) dise T7(s) + zdlsc T (s) = 1/6 —:u THs) - (T8 (s))*,
e o =15 (s
(7.4 dise Thls) = ] i O )]

Combining eq. (7.4) with eq. (6.12) we obtain the following three conditions
(I=0, 1, 2) on the Regge parameters:

8

7.5 0< —— dt' Q.11
(7.5) \/H_Z}M) j Q(

Zt’

) zﬁu Vralt'y ) <1

au?

These conditions must be valid for all physical I and real s=>16u*. From the
crossing matrix we see immediately that a theory taking only one I =1 Regge
trajectory into account leads to inconsistencies: eq. (7.5) will be violated either
for I=1 or for I=2. Looking at the crossing matrix we conclude that
eq. (7.5) requires a dominant contribution from I=0 Regge trajectories ()
(e.g., Pomeranchuk trajectory).

(*) Considering eq. (7.5) in the asymptotic region one also is forced to the conclusion
a(t)< 1 for real ¢< 0 for all Regge trajectories.
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As is well known the unitarity condition can be analytically continued intg
the complex I-plane. Equation (7.3) has already been written in a form ayp.
propriate for complex angular momentum. As is evident from eq. (6.12) the
function disc 7%!(s) is holomorphic in the half-plane Rel>—}%, and thus
eq. (7.4) defines 7, everywhere in this half-plane

e ,
(7.6) 7i(s) = (1_4V8 1 dise T;’;fn(s)),

S

for all real s>4u2 Equation (7.5) hlds for all physical I. It is reasonable
to postulate the validity of the condition (7.5) not only for physical I, but
on the whole real semi-axis /> —3%. Then #; is seen to be a nonnegative
real function of ! on this semi-axis. The analytic continuation into the I-plane
goes according to eq. (7.6) through the known I-dependence of diseT”! (s).
This [-dependence, in turn, is only through the Legendre function @, so that
we have

(7.7) dise T (s) = (dise T%¢ (s))*

8,in

(7.8) 7(8) = (73(8))*

We now wish to write down what form the unitarity condition takes along
a Regge trajectory, i.e., for values of I and s such that I=oal(s) where
n=1,2,... or N,. From the results obtained in Sect. 6 we see that for a
fixed value of s and for ! in the vicinity of the n-th trajectory the scattering
amplitude T7'(s) may be decomposed as follows

(1.9) B AT O

where Bl (s) as a function of ! is regular at !=o/(s). Inserting this into
eq. (7.3) and comparing on both sides the pole term at I= & (s) and the
part that is regular at 7= a)(s) we obtain the two equations (*)

(7.10) 1+ 2§ ]/ _4,“ T[ (ad(s))* (s) =0,
8
d * 1 8
7.11 T = —[ri(s)]p ——— .
(7.11) - (G 70)_ o~ T

(") These equations are valid only above the threshold, i.e. away from the singu-
larities of the partial-wave amplitude associated with l—=o)(4u?) and s=4u2. If the
second term in eq. (7.9) is neglected and nf=1 is assumed, both equations reduce to
fi(s) =s¥(s —4u2)~t Im ol(s), an approximation discussed in ref. ().
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In the derivation of eq. (7.11) we have repeatedly made use of eq. (7.10). When
we consider in eq. (7.3) the pole at = (x/(s))* we obtain equivalent results.

For each Regge trajectory we have thus obtained one pair of equations
(7.10), (7.11). The total number of equations equals the total number of Regge
parameters a;(s), vi(s). Even when the Regge parameters are given, the ex-
pression for the scattering amplitude (eq. (6.4)) contains still another unknown
function, namely 75“(8). To determine this function too we must obtain an
equation that contains ! as one parameter. This can obviously be achieved
by exploiting the unitarity condition also for values of I that do not lie on a
Regge trajectory, for example by using the N/D method. FROISSART (*4) has
described the general procedure to be followed in the presence of inelastic pro-
cesses. We shall, however, postpone the explicit formulation of equations until
we have discussed the asymptotic properties of the various functions that occur
in our approach. In principle, the N/D equations complete our set of dynam-
ical equations, which now numbers as many equations as we have unknown
functions. One may hope that these equations determine all unknown func-
tions of the problem uniquely.

One could imagine that our dynamical equations allow an iterative proce-
dure to be followed. The first step would consist of two parts: Assuming
i(s)=0 one tries to find a set of Regge parameters that satisfy eqs. (7.10),
(7.11). In other words, one imposes eqs. (7.10) and (7.11) on Tj‘l(s), the strip
approximation to the full scattering amplitude. Secondly one uses the Regge
parameters so obtained as an input for the N/D calculation. The »-th step
of the iterative procedure follows the same scheme, using the approximation
to 7"!(s) obtained in the (r—1)-th step as an input. Unfortunately, our equa-
tions are extrimely complicated and highly nonlincar, so that a rigorous nu-
merical treatment, even of the first step of the iteration procedure, seems to
be out of question. But still our system of equations might be quite valuable
a3 a starting point for developing useful calculational schemes that incorporate
further approximations.

Equation (7.10) has also been derived by FrauTscHI, KAus, and ZACHA-
RIASEN (°). These authors use as a second equation a dispersion relation for
,(s). This approach suffers from the difficulty that dispersion relations of a
simple structure hold only for the leading trajectories. For the trajectories
following the leading one (n=1) additional branch points, due to crossing of
two or more trajectories, are known to occur which considerably complicate
the structure of the dispersion relations. Within the framework of the pre-
sent paper dispersion relations seem to be unsuitable from still another point
of view. Inherent in our whole approach is a restriction to the right half of
the angular-momentum plane, Rel> —1%, so that eqs. (7.10) and (7.11) must

(1) M. FroissarT: Nuovo Cimento, 22, 191 (1961).
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be exploited only in this half-plane. Thus we need to calculate only those partg
of the Regge trajectories which lie in the right half-plane, but not the whole
trajectories as would be necessary when using dispersion relations.

8. — Connection with the bootstrap equations of Zachariasen and Zemach.

In connection with the remarks concerning the solution of our dynamical
equations it might be not quite without interest to see how the bootstrap equa-
tion of Zachariasen and Zemach (1°) for the one-channel case is contained in
our approach. We shall list below a number of assumptions and «approxi-
mations » that will result, when taken all togethcr, in the input function for
the N/D equations as assumed by these authors.

1) All Regge trajectories except -the leading one for I =1 (p-meson) are
neglected. As pointed out in the last Section, this assumption in a theory
assuming correct analytic behaviour already leads to contradiction with uni-
tarity, which can be removed only by considering at least one additional
I =0 trajectory.

2) Assume y,(s) =y =const and o,(m, —id)=1, where m, denotes the
mass of the p-meson. Then the expansion

(8.1) ay(s) = 1+ (s — mi + i) og(mi — i) 4 ...

is used, assuming the imaginary part of océ(mz—@'zl) to be negligible compared
with the real part. Assuming furthermore

(8.2) A -oc;('mg —id)<k1,

we insert this expansion into eq. (5.8). In the neighbourhood of s=m, we
then have o (s) ~1 and the leading term in eq. (5.8) becomes

LT e s ).
ob(me i) (s—md)* + A (2t + s — 4u?)

3
(8.3) go(sy ) ~ Z

We emphasize tha’ this approximation is justified only in the immediate neighbor-
hood of s=mg, and is already so crude tha’ the originally correct analytic
behaviour of g.(s, 1) is completely destroyed.

3) In spite of all that we now postulate the validity of the approxi-
mation (8.3) on the whole real s-axis (—oo<Cs< -+ co). Then we can caleu-
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jate the amplitude T5P(s, t) by

(8.4)  T(s, 1) =

+03
]f / gp(sly t) 3 VY 2t+‘mg—4/£2—iﬁ
— Jds - :1- . _

7 §'—5—10 o(mz—id) me— 14 —s
—

3 VY s —4p? 2t
= a1 .
4 oy(mi—iA) [ er;—ul—s( +8—4[u2>]

We see that formally this amplitude contains a constant S-wave term and a
resonant P-wave term, the latter one being described by a pole below the real
axis on the unphysical sheet. Upon forming the complete s-channel contri-
bution, the S-wave part, of course, drops out

(8.5) To(sy t, u) = Tg7(s, t) — T (s, u) =

3 y t—u ¢ qi-2cosf,
2 ag(mi—id) mEi—id—s Am mi—id—s’

We have introduced here a wmp-coupling constant ¢ by

c? 3y
(8.6) 4w ag(mi—iAd)
4) For comparison with the N /D calculation of Zemach and Zachariasen
we have now to calculate the contribution from the crossed channels. One
introduces a zero-width approximation, 4 — 0, thus replacing eq. (8.3) by

(8.7) Gols, 1) A~

c? 2
i (2t + s —4u?) - wé(s —mg) .

Inserting this equation into eq. (6.6) we obtain as P-wave contribution
from the third spectral function

1 ¢ 25+ mi—4pu? 2mg
(8.8 To(s) = =«—— e 1 = I
) , () 4 4m §—4u? Gufl+ §—4u?

This term represents the forces due to the crossed channels. The integral con-
taining H¥ gives no contribution as H? vanishes identically because of the
faulty analytic properties of our approximation. Another P-wave contribution,
however, equal in magnitude to T,(s), comes from eq. (6.7), i.e., from the term
that we have associated with inelastic processes. Thanks to the wrong analytic
properties of the approximation this contribution is not associated with an
imaginary part, as it should be in the inelastic region; and this circumstance
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removes the contradiction against unitarity, mentioned under 1), due to the
neglect of the Pomeranchuk trajectory. The total input function for the N/p
calculation is thus obtained as

(8.9)  Tys) = Ty(s) 4 T(s) — o 25 me— 4t (1 o )

1
2 4x §—4p®

which is exactly what one expects from eq. (8.5) on the basis of crossing sym-
metry, and what has been used in the work of Zemach and Zachariasen,

It is clear from the above derivation that the primitive bootstrap calcy-
lation based on the exchange of nonreggeized one-particle states can be only
a poor approximation to a fully reggeized bootstrap calculation, and that it
can be expected to give only qualitatively correct results.

9. — Conclusions.

In the preceding Sections we have outlined, using pion-pion scattering as
an example, a systematic procedure for introducing Regge poles into a rela-
tivistic S-matrix theory in such a way that exact crossing symmetry and Man-
delstam analyticity are preserved. Contributions to the spectral functions due
to Regge terms are nonvanishing only within the usual boundary curves.
Summing over all contributions to the scattering amplitude that are due to
Regge poles in the direct or one of the crossed channels we obtain an approx-
imation to the scattering amplitude that we have termed the strip approx-
imation. This approximated amplitude describes bound states, resonances at
low energy, forces due to exchange of Reggeized particles, and high-energy
« Regge behaviour ». The total contribution to the scattering amplitude from
the n-th direct channel Regge pole for isospin I (cf. egs. (5.29) and (2.14)).

(9.1) T! (syt, ) = TIP(s, 1) + (— 1) TXP(s, u)

may be associated with a graph such as the one in Fig. 1a, symbolizing a single
intermediate Regge particle in the direct channel propagating from the initial
vertex to the final vertex. The other graphs analogously represent pion-pion
scattering by exchange of single intermediate Regge particles. The strip ap-
proximation may then be characterized as the total contribution to the scat-
tering amplitude from all graphs with a single intermediate Regge particle
This last remark connects our formalism to those simple bootstrap models (**)

(*3) For a survey see F'. ZACHARIASEN: Bootstraps [contained in Strong Interaction
and High-Energy Physics, ed. by R. G. Moornouse (Edinburgh, London, 1964)].
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where the input forces are approximated by contributions from graphs that
represent the exchange of a single meson of fixed spin. Our strip approxima-
tion and more generally all other developments in this paper too can be under-
stood as being the result

of a consistent Reggeization J 4, R 3,
of one of those simple (one- : A T, 7T Ty 7T
N\
channel) bootstrap models, e g
7/
subject only to the condi- -~ /)——-___I——( 3, R’ S, R
. T n n

tion that crossing symmetry 7 R

AN
and Mandelstam analyticity 2 3 T/ VIS
must be correctly obtained. 72 PR 5 PR

When the unitarity con- a) b) c)

dition is imposed one ob- Fig. 1. — Graphs symbolizing pion-pion scattering
tains bootstrap equations. through one intgr@ediate R.egge particle R,. a) The
This part of our work is Regge .partlcle is in the direct channel, the graph
symbolizes the bound states and resonances due ot

related to the paper by RE. b) and ¢) With R! in a crossed channel the graph
FravuTscHI, KAUs, and ZA- symbolizes exchange of a Regge particle.
CHARIASEN (°) inasmuch as
we too exploit the unitarity condition for complex angular momentum, on
the other hand, however, we would like to circumvent the use of dispersion
relations for the Regge parameters, because in our approach only those
parts of the Regge trajectories are used that are located in the right half-
plane. An exploration of the left half of the angular-momentum plane is
nowhere called for, which we consider a fortunate circumstance because
analyticity properties in the left half-plane are presumably very complica-
ted in general. Our work is more closely related to that of CHEw and
JoNES (4). The main difference is our use of another representation of the
Regge terms. In the present formulation no need arises to distinguish the
casymptotic» regions from low-energy regions, and consequently the para-
meters s,, t;, #; of Chew and Jones, marking the beginning of the asymptotic
region, are absent in our approach. One consequence of this is that the con-
ventional N/D-method is presumably as well suitable in connection with our
formulation as is the « modified » N/D-method of Chew (1¢). Furthermore we
feel that a better description of the low-energy, long-range part of the gene-
ralized potential is achieved, because in our approach also those parts of the
third spectral function are nonvanishing that are close to the physical region
of the direct channel (—s<Cu, or f; in the notation of ref. (%)).

Our work could be generalized in various ways. For example, the present
one-channel formulation might be extended to a many-channel formulation.

(1%) G. ¥. CuEw: Phys. Rev., 129, 2363 (1963); 130, 1264 (1963).
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This should not be too difficult as long as we restrict ourselves to only ¢
body final states. The inclusion of three- and more body final states preseys,
a major difficulty because the analyticity properties of the corresponding py,
duction amplitudes are mot well understood. Another generalization of our
formalism would be the addition of terms associated with cuts in the angylg,.
momentum plane. This can be done, but it complicates the bootstrap problem
enormously. We believe, therefore, that it is not very useful to elaborate ¢
this point as long as one has not learned how to do reliable numerical caley.
lations for a model with Regge poles only.

RIASSUNTO (%

by

In un precedente articolo sullo scattering di potenziale si ¢ sviluppata una rappre.
sentazione di Regge modificata che ¢ distinta dalle altre rappresentazioni di Regge
dalla proprietd che la sua struttura analitica € proprio del tipo richiesto dalla relazione
di doppia dispersione di Mandelstam. Qui si discute come si possa utilizzare quests
rappresentazione nello schema di una teoria relativistica della matrice S per lo scat-
tering pione-pione. Si definisce un’approssimazione all’ampiezza di scattering esatta,
chiamata approssimazione a strisce, come somma di tutti i possibili contributi all’am.
piezza discattering dati dai poli di Regge nel canale diretto od in uno di quelli incrociati.
Questa approssimazione a strisce unisce le seguenti caratteristiche: proprieta di anali
ticita quali sono descritte dalla rappresentazione di Mandelstam, esatta simmetria
incrociata, « comportamento di Regge » alle alte energie, descrizione degli stati legati
e delle risonanze alle basse energie, e delle forze dovute allo scambio di particelle regge-
izzate. Si discutono le ampiezze dell’onda parziale e si introduce la condizione di
unitarietd per il momento angolare complesso. Si ottiene allora un gruppo di equazioni
che sembra sufficiente in linea di principio per una determinazione autocoerente delle
traiettorie di Regge, in quanto esse siano collocate nel semipiano destro, e del termine
di fondo dell’ampiezza di scattering. Data la complessitd delle equazioni, non & ancora
prevista la possibilith di un trattamento numerico. Il nostro articolo si collega cor
altri articoli recenti di Chew e Jones, di Frautschi, e di Kaus e Zachariasen sul boot
strap delle traiettorie di Regge.

(*) Traduzione a cura della Redazione.
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